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Abstract
Environmental attributes relevant for spatial prediction of landslides triggered by rain and
snowmelt events were derived from digital elevation model (DEM). Those data in conjunction
with statistics and geographic information system (GIS) provided a detailed basis for spatial
prediction of landslide hazard. The spatial prediction of landslide hazard in this paper is based on
discriminant analysis. Discriminant analysis is a multivariate technique that can be used to build
rules that can classify elements or observations successfully between stable and unstable areas.
The discriminant rule would show how to take into account the relative risks of making errors of
misclassification. Those general rules allow managers to consider that errors in one direction
may be much more costly than errors in the other direction.
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Introduction
Human activities, such as deforestation and urban expansion, accelerate the process of landslides
(Chung et al., 1995). These activities can affect the process of erosion and sedimentation, with
harmful impacts on aquatic habitat. The dominant erosion and sedimentation  processes are due
to surface erosion or mass failure. Mass failure is a gravity-driven process that occurs when the
shear strength of a soil mass is overcome by the shear stresses acting against it. Mass failure is



triggered by rain and snowmelt events and it is the most important cause of sedimentation in
areas of steep slopes and unstable soils. Concern about mass failure calls for improved forest
management practices in all forestlands where human activities have taken place. 

In recent years the use of GIS for landslide hazard modeling has increased because of the
development of commercial systems, such as Arc/Info (ESRI) and the quick access to data
obtained through Global Positioning System (GPS) and remote sensing. The use of multivariate
statistics with GIS has been studied for a long time (Carrera et al., 1983, 1991, 1992, 1995). At
the beginning stage of landslide hazard modeling large grid cells with a ground resolution of 200
by 200 m were used. Although the method based on spatial correlation has not undergone major
changes, the basic modeling element (cell size) and the tools for modeling have improved
significantly. 

 The statistical model developed by Carrera et al., is built up in a "training area" where the spatial
distribution of the landslides is well known. After the model is extended to the entire study area
("target area"), it is assumed that factors that cause slope failure in the study area are the same as
these in the "training area". The landslide hazard modeling is achieved by discriminant analysis
and multiple regression. 

More recently, Mark and Ellen (1995) applied logistic regression for predicting sites of rainfall-
induced shallow landslides that initiate debris flow. In their study, statistics were used to
determine the best correlation between mapped debris flow sources and physical attributes
thought to influence shallow landsliding. 

 Gorsevski et al. (2000), also applied logistic regression for spatial prediction of  landslide
hazard. Logistic regression was used to predict the probability of occurrence in tandem with the
receiver operator characteristic (ROC) curve as a measure of performance of a predictive rule.
The ROC curve is a plot of the probability of having true positive identified landslides versus the
probability of false positive identified landslides as the cut-off probability varies. ROC curve was
used when decision making was done with uncertainty. The  performance of ROC curve may be
systematically varied by choice of a decision parameter that adjusts the trade-off between the
proportion of pixels correctly identified and those incorrectly identified.

 However, few of these studies integrate continuous and discrete variables for statistical analysis,
and multivariate methods are not often used for exploratory data analysis. Integrating continuous
and discrete variables is done by converting  the discrete variables to dummy variables and
joining the dummy variables with the continuous variables. When multivariate methods  are used
for exploratory data analysis the advantages are that fewer new variables can be created, it is
easier to locate or identify abnormalities, and it is easier to check assumptions that may be
required for certain statistical analysis to be valid. For this study the development of the
quantitative hazard model uses continuous and discrete variables and Principle Component
Analysis (PCA) as a first step for screening the data. 

In this paper we focus on Rocky Point, a small watershed of the Clearwater River Basin in
central Idaho, where a total of 23 landslides were recorded (Figure 1). The Rocky Point



watershed is located in central Idaho in the Clearwater River Basin  and occupies approximately
4230 hectares (Figure 1).  The highly dissected mountainous topography of the Rocky Point
watershed is typical for Idaho's Clearwater River Basin. Elevation in the Rocky Point watershed
ranges from 1097 m  to 1889 m and slopes vary between 0 and 44 degrees. Precipitation
averages about 1100 mm annually. 

 The trigger for mass failure is blamed on the landslide events that occurred during the winter of
1995-96 following heavy rains, snowmelt, and high river flow in the Clearwater National Forest.
The landslide data were collected through a combination of photo interpretation and field
inventory (McClelland et al., 1997).  DEM with TAPES-G software (Gallant et al., 1996) was
used to generate quantitative environmental attributes. Environmental attributes included: 
elevation, slope, aspect, profile curvature, plan curvature, tangent curvature,  flow path and
upslope area (Table 1). 

Attribute Definition Significance

Elevation Height above see level Climate, vegetation, potential energy

Slope Change in elevation divided  by
horizontal distance

Overland and subsurface flow velocity and runoff
rate, precipitation, vegetation, geomorphology, soil
water content, land capability class

Aspect Slope azimuth Solar insolation, evapotranspiration, flora and
fauna distribution and abundance

Profile curvature Slope profile curvature Flow acceleration, erosion/deposition rate,
geomorphology

Plan Curvature Contour curvature Converging, diverging flow, soil water content, soil
characteristics

Tangent Curvature Curvature of line formed by
intersection of surface with
plane normal to flow line

Erosion/deposition

Flow Path Distance from watershed divide
to the point of interest

Erosion rates, sediment yield, time of concentration

Upslope slope Mean slope of upslope area Runoff velocity, potential energy

Table 1. Environmental attributes derived from digital elevation model.

In the last several years, tools and techniques for developing quantitative hazard models and
prediction of landslide hazard have advanced considerably (Carrera et al., 1991; Montgomery
and Dietrich, 1994; Mark and Ellen, 1995). Multivariate methods have been applied to various
disciplines such as soil-landscape modeling, and more recently in environmental science
(Carrera, 1983; Gessler et al, 1995; Gorsevski et al, 2000). In this study the spatial prediction of
landslide hazard  is based on discriminant analysis. Discriminant analysis is a multivariate
technique that is used to build rules that can classify landslide hazard into appropriate class.



Discriminant analysis is similar to regression analysis except that the dependent variable is
categorical rather than continuous. We implement discriminant rules  that take into account the
relative risks of making errors of misclassification. 

 Methods
 All environmental attributes in this study were continuous, except the aspect and the parent
material. For those two environmental attributes dummy variables for each of the categories of
the nominal variables were created. A set of 26 attributes including the dummy variables was
acquired for entire study area.  The mapping unit used  to describe the difference between
adjacent units across the study area was set to a cell size of 60 by 60 m. A total of 5 % of the
mapping units was sampled for constructing the subset (training area) to be used for the
discriminant analysis. 

Figure 1. Distribution of landslides over the Rocky Point watershed 

As a first step in this study, a  principal component analysis (PCA)  was performed on the subset
data to help analyze the multivariate data set. The set of 26 attributes was transformed into a new



set of 11 attributes called principle component scores. The number of principal components for
the new data set was selected through a  combination of scree plot and at least 80% of total
variability in the original variables.  A multivariate normal plot was used to check whether the
newly created principle component scores were distributed according to a multivariate normal
distribution. When the predictor variables have a multivariate normal distribution, then the
discriminant rules are known to be the best at discriminating (Johnson, 1998). 

Nearest neighbor discriminant analysis was used to classify presence and absence of landslides
using the principle component scores. The estimate of probabilities of  misclassification was
based on cross-validation. Cross-validation method removes each observation vector from the
calibration data set at a time, forms the discriminant rule based on all the remaining data to
classify the removed observation, and notes whether the observation is correctly classified. When
developing the discriminant rules for both populations (presence and absence of landslides) we
take into account the relative risks of making errors of misclassification. Errors in one direction
might be more serious than errors in the other direction. By assigning relative costs of equal or
unequal misclassification of these two kinds of errors the development of discriminant rules for
both populations show various outcomes of the final classification. When we assign relative
costs of equal misclassification than the errors in both directions are equal. Conversely, when we
assign relative costs of  unequal misclassification the errors in one direction  is larger. It is
apparent that the probability of making an error in one direction can be reduced, but it is also
apparent that reduction of probability of making an error in one direction will cause an increase
in the probability of making an error in the other direction. 

Discussion
The multivariate normal plot shown in Figure 2 was constructed from the principles component
scores, and  it is not distributed normally. If the normality assumption is  not satisfied, the nearest
neighbor analysis is used. Nearest neighbor discriminant analysis is a nonparametric
discrimination procedure, which depends on the Mahalanobis distance between pairs of
observation vectors (Johnson, 1998). The new observation is classified by finding the closest
observation (Mahalanobis distance) in the calibration data set, and assigning the new observation
to the group from which the majority of observation's nearest neighbor came. For this analysis
the nearest neighbor (k) was set to 5, for classifying the new observations. Although we used  a
few different options for the nearest neighbor (k), for our dataset (k) was set to 5 because it
provides the best discriminant rule. 

 



Figure 2. Multivariate normal probability plot for
the principles component scores

The classification results in the calibration data were classified by the cross-validation method.
The summary matrices for the cross-validated estimates  using equal and unequal  costs are
shown in Table 2.  The summary in the table shows three different cases of the calibration data. 
The three different cases show how each landslide and nonlandslide data would be classified by
the discriminant rule. The difference between the discrimination rule is associated with the cost
function. For example, Case I shows a situation when it is nine times as costly to classify a
nonlandslide cell as a landslide, than it is to classify a landslide cell as nonlandslide. Case II
shows a situation when it is four times as costly to classify a nonlandslide cell as a landslide, and
lastly Case III shows a situation when equal cost is used for both populations. Although the cost
function is different, it is assumed that prior probability for developing the discriminant rule are
equal.   



Table 2. Percent Classified into presence or absence of
landslides

From the results Case I shows 98.2% of the observations are correctly classified as nonlandslide
data, and 9.09% of the observations are correctly classified as landslide data. Case II shows
86.83% of the observations are correctly classified as nonlandslide data, and 31.82% of the
observations are correctly classified as landslide data. Finally, Case III shows 68.26% of the
observations are correctly classified as nonlandslide data, and 63.64% of the observations are
correctly classified as landslide data. The prediction of landslide hazard is shown in the three
maps derived by the discriminant rules mentioned above, and  Figures 3 (a) (b) and (c) illustrates
all three cases of landslide hazard. 

 



Figure 3. Hazard maps  generated with different cost functions

Conclusion
This paper has outlined the process of mapping landslide hazards using GIS, discriminant
analysis, taking into account the relative risks of making errors of misclassification. Decision
makers can choose the level of risk they are prepared to accept based on the final outcome of
several different alternatives using different cost functions. Reduction of the probability of



making an error in one direction is possible when there are only two populations (landslide and
nonlandslide). However, reducing the probability of making an error in one direction causes an
increase in the probability of making an error in the other direction. These discriminant rules for
minimizing the error in one direction allow managers to use prior information (knowledge) based
on experience and heuristic knowledge.

Acknowledgements
The research and work presented in this paper was supported through data provided by the
Clearwater National Forest and the Rocky Mountain Research Station in Moscow, Idaho.

References used
Carrera A., 1983. Multivariate Models for Landslide Hazard Evaluation, Mathematical Geology,

Vol. 15, No. 3, 1983

Carrera A,  M. Cardinali, and F. Guzzetti 1992. Uncertainty in Assessing Landslide Hazard and
Risk. ITC Journal, No. 2, pp. 172-183.

Carrera A., M. Cardinali, R. Detti, F. Guzzetti, V. Pasqui, and P. Reichenbach 1991. GIS
Techniques and Statistical Models in Evaluating Landslide Hazard. Earth Surface
Processes and Landforms, Vol. 16, 427-445 (1991)

Carrera A., M. Cardinali, F. Guzzetti, and P. Reichenbach, 1995. GIS Technology in Mapping
Landslide Hazard, Geographical Information Systems in Assessing Natural Hazards (A.
Carrera and F. Guzzetti, editors, Kluwer Academin Publishers, Dordrecht, The
Netherlands, pp. 135-175.

Chung C.F., A.G. Fabbri and C.J. van Westen, 1995. Multivariate Regression Analysis for
Landslide Hazard Zonation, Geographical Information Systems in Assessing Natural
Hazards (A. Carrera and F. Guzzetti, editors, Kluwer Academin Publishers, Dordrecht,
The Netherlands, pp. 107-133.

Chung C.F., and A.G. Fabbri, 1999. Probabilistic Prediction Model for Landslide Hazard
Mapping. Photogrammetric Engineering and Remote Sensing. Vol. 65, No. 12 1999

ESRI Inc, 1998. Environmental Systems Research Institute, Inc. Computer Software Version
7.2.1, Redlands, CA: ESRI Inc.

Gallant J.C. and J.P. Wilson 1996. TAPES-G: A Grid-based Terrain Analysis Program for
Environmental Sciences, Computers & Geosciences, Vol. 22, No. 7, pp. 713-722, 1996

Gessler P.E., I.D. Moore, N.J. McKenzie, and P.J. Ryan 1995. Soil-landscape modelling and
spatial prediction of soil attributes, INT. J. Geographic Information Systems, 1995, Vol.
9, No. 4, 421-432.



Gorsevski P.V., P.E. Gessler, and R.B. Foltz 2000. Spatial Prediction of Landslide Hazard Using
Logistic Regression and GIS, 4th International Conference on Integrating GIS and
Environmental Modeling (GIS/EM4):Problems, Prospects and Research Needs. Banff,
Alberta, Canada, September 2 - 8, 2000. 

Johnson D.E., 1998. Applied Multivariate Methods for Data Analysis. Duxbury Press. An
Intrnational Thomson Publishing Company 1998.

McClelland D. E., R. B. Foltz, W. D. Wilson, T. W. Cundy, R. Heinemann, J. A. Saurbier, and
R. L. Schuster 1997. Assessment of the 1995 & 1996 floods and landslides on the
Clearwater National Forest, Part I: Landslide Assessment, A Report to the regional
Forester Northern Region U.S. Forest Service, December 1997.

Mark R.K., and S.D. Ellen 1995. Statistical and Simulation Models for Mapping Debris-Flow
Hazard, Geographical Information Systems in Assessing Natural Hazards (A. Carrera and
F. Guzzetti, editors, Kluwer Academin Publishers, Dordrecht, The Netherlands, pp. 93-
106.

Montgomery D.R., and W.E. Dietrich 1994. A physically based model for the topographic
control on shallow landsliding. Water Resources Research. Vol. 30. No. 4 Pages 1153-
1171. April 1994.

SAS Institute Inc., 1996 SAS/STAT Software: Changes and Enhancements Through Release
6.12. Cary, NC: SAS Institute Inc.

Authors
Peter V. Gorsevski, Ph.D. Candidate of Remote Sensing and GIS
Department of Forest Resources, CNR, Moscow, Idaho. 83844-1133.
Email: gors1571@uidaho.edu, Tel: +208-885-4946, Fax: +208-885-6226

Paul Gessler, Ph.D., Assistant Professor of Remote Sensing & GIS
Department of Forest Resources, CNR, Moscow, Idaho. 83844-1133.
Email: paulg@uidaho.edu, Tel: +208-885-2595, Fax: +208-885-6226

Randy B. Foltz, Ph.D., Research Engineer USDA Forest Service
Rocky Mountain Research Station, 1221 S. Main St., Moscow, Idaho. 83843.
Email: rfoltz@fs.fed.us, Tel: +208-882-3557, Fax: +208-883-2318


	Abstract
	Keywords
	Introduction
	€Methods
	Discussion
	Conclusion
	Acknowledgements
	References used
	Authors

